LV8400V

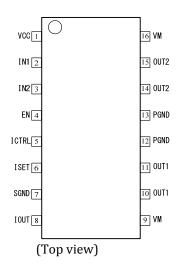
Bi-CMOS IC

Forward/Reverse Motor Driver Application Note

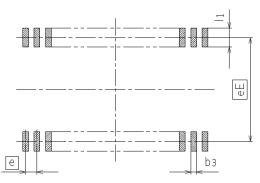
Overview

The LV8400V is a 1-channel motor driver IC using D-MOS FET for output stage and is able to control 4 modes of forward, reverse, brake, and standby.

As the P/N-channel structure is used in the H-bridge output stage, the LV8400V features minimal number of external component and low on-resistance (0.33Ω typical). This IC is optimal for driving motors that requires high current

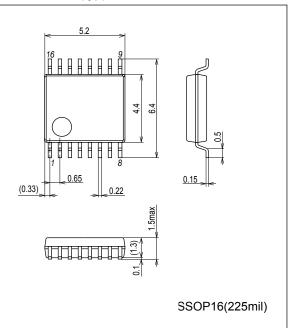

Function

- 1-channel forward/reverse motor driver
- Low power consumption
- Low output ON resistance 0.33Ω
- Built-in constant current output circuit
- Built-in low voltage reset and thermal shutdown circuit
- Four mode function forward/reverse, brake, standby

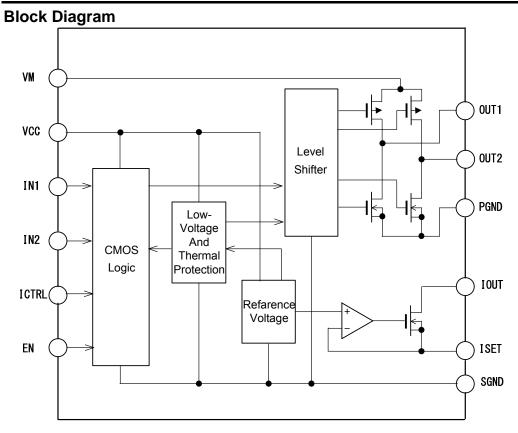

Typical Applications

- · Digital single-lens reflex camera
- POS Printer

Pin Assignment


Recommended Soldering Footprint

Semiconductor Components Industries, LLC, 2013 December, 2013


Package Dimensions

Unit : mm(typ)

Caution: The package dimension is a reference value, which is not a guaranteed value.

(Unit : mm)								
Reference Symbol	SSOP30(225mil)							
eE	5.80							
e	0.65							
b3	0.32							
I1	1.00							

Specifications

Absolute Maximum Ratings at Ta=25°C, SGND=PGND=0V

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage (for load)	VM max		-0.5 to 16.0	V
Power supply voltage (for control)	V _{CC} max		-0.5 to 6.0	V
	I _O max	DC	1.2	А
	I _O peak1	$t \le 100ms$, f = 5Hz	2.0	А
Output current	I _O peak2	$t \le 10ms$, f = 5Hz	3.8	А
	I _{OUT} max	DC	30	mA
Input voltage	V _{IN} max		-0.5 to V _{CC} +0.5	V
Allowable power dissipation	Pd max	Mounted on a specified board *	800	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

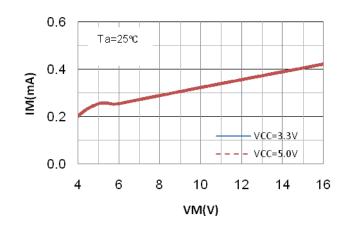
* Specified board : 30mm \times 50mm \times 1.6mm, glass epoxy board.

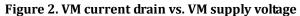
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time. Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Devenuetor	Current el	Conditions		Linit		
Parameter	Symbol	Conditions	min	typ	max	Unit
Power supply voltage (for load)	VM		4		15.0	V
Power supply voltage (for control)	V _{CC}		2.7		5.5	V
Input signal voltage	VIN		0		V _{CC}	V
Input signal frequency	f max	Duty = 50%		200		kHz


LV8400V Application Note


Dava		O: make al	Conditions	Dementer	Ratings			
Para	meter	Symbol	Conditions	Remarks	min	typ	max	Uni
Standby load cu	rrent drain 1	IMO1	EN = 0V	1			1.0	μA
Standby load current drain 2		IMO2	$EN = 0V, V_{CC} = 0V,$ Each input pin = 0V	1			1.0	μA
Standby control	current drain	ICO	EN = 0V, IN1 = IN2 = 0V	2			1.0	μA
Operating load o drain 1	current	IM1	V _{CC} = 3.3V, EN = 3.3V	3		0.35	0.70	mA
Operating load o drain 2	current	IM2	V _{CC} = 5.0V, EN = 5.0V	3		0.35	0.70	mA
Operating curre	nt consumption 1	IC1	V _{CC} = 3.3V, EN = 3.3V	4		0.6	1.2	m/
Operating currer consumption 2		IC2	V _{CC} = 5.0V, EN = 5.0V	4		0.8	1.6	mA
High-level input	voltage	VIH	$2.7 \le V_{CC} \le 5.5V$		0.6× V _{CC}		V _{CC}	v
Low-level input voltage		VIL	$2.7 \le V_{CC} \le 5.5V$		0		0.2× V _{CC}	v
High-level input current (EN,IN1, IN2, ICTRL)		Iн	V _{IN} = 5V	5	12.5	25	50	μA
Low-level input ((EN,IN1, IN2, IC		۱ _{IL}	V _{IN} = 0V	5	-1.0			μA
Pull-down resist (EN,IN1, IN2, IC		R _{DN}			100	200	400	kΩ
Output ON resis	tance	R _{ON}	Sum of top and bottom sides ON resistance. 2.7V \leq V_CC \leq 5.5V	6		0.33	0.5	Ω
Constant curren current	t output leakage	I _O LEAK	EN = 0V	7			1.0	μA
Output constant	current	IOUT	RSET = 40Ω, Internal reference = 0.2V	8	4.65	5.00	5.35	mA
ISET pin voltage	9	VISET	RSET = 40Ω	9	0.186	0.20	0.214	V
Constant current output ON resistance		R _{ON} IO	RSET = 0Ω, I _O = 5mA	10		20	30	Ω
Low-voltage det	ection voltage	VCS	V _{CC} voltage	11	2.10	2.25	2.40	V
Thermal shutdo	wn temperature	Tth	Design guarantee *	12	150	180	210	°C
	Turn-on time	TPLH		13		0.5	1.0	μ
Output block	Turn-off time	TPHL		13		0.5	1.0	μ

* Design guarantee value and no measurement is performed.

Remarks

- 1. Current consumption when output of the VM pin is off.
- 2. Current consumption at the V_{CC} pin when all functions are stopped.
- 3. Current consumption of the VM pin when EN is high.
- 4. Current consumption of the V_{CC} pin when EN is high.
- 5. These input pins (EN, IN1, IN2, and ICTRL) have an internal pull-down resistor.
- 6. Sum of the upper and lower side output on resistance.
- 7. Leakage current when the constant current output is off.
- 8. Current value that is determined by dividing the internal reference voltage (0.2V) by RSET.
- 9. ISET pin voltage when the constant current output block is active.
- 10. ON resistance value of the constant current output block.
- 11. All output transistors are turned off if a low-voltage is detected.
- 12. All output transistors are turned off if the thermal protection circuit is activated. They are turned on again as the temperature decreases.
- 13. Rising time from 10 to 90% and falling time from 90 to 10% are specified.

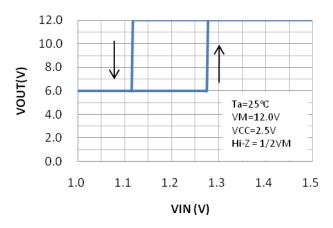
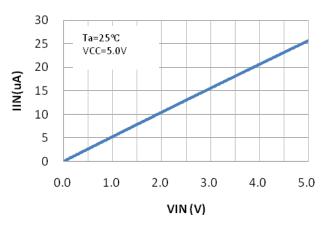
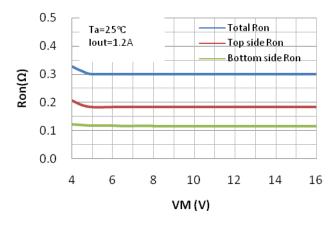
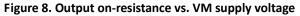





Figure 4. Output voltage vs. Input voltage

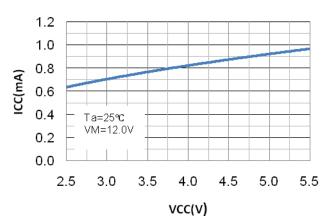


Figure 3. VCC current drain vs. VCC supply voltage

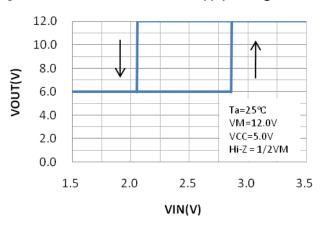
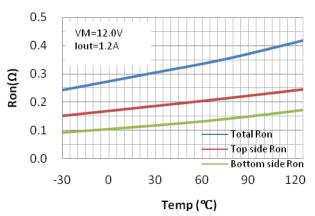



Figure 5. Output voltage vs. Input voltage

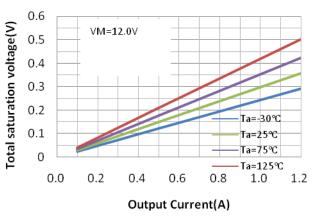
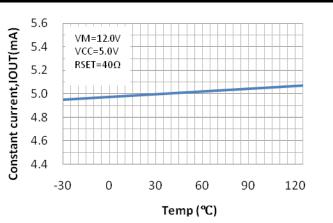



Figure 9. Saturation voltage vs. Output current

LV8400V Application Note

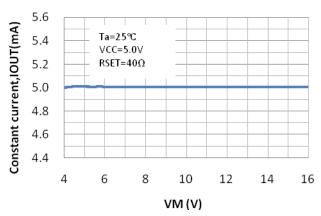


Figure 11. Constant current, IOUT vs. VM supply voltage

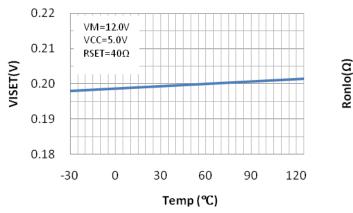
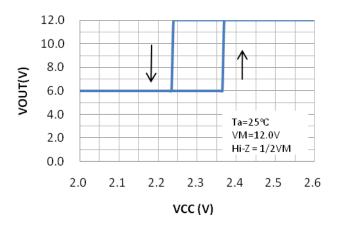



Figure 12. VISET voltage vs. Temperature

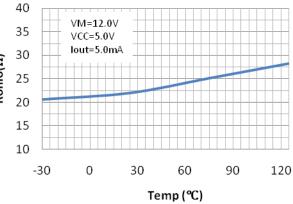


Figure 13. IOUT on-resistance vs. Temperature

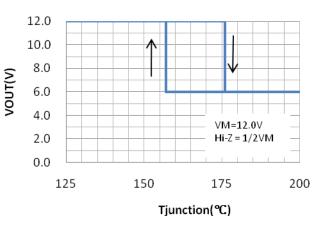


Figure 15. Thermal shutdown characteristic

LV8400V Application Note

	tions	Description	Equivalent aircuit
Pin No.	Pin name	Description	Equivalent circuit
9	VM	Motor block power supply.	
16		(Both pins must be connected)	
		The applicable voltage range is 4.0V to 15.0V.	
		Make sure to connect a bypass capacitor	
		between VM (pin 9 and 16) and PGND (pin 12	
		and13) respectively to stabilize power line of	
		VM.	
1	V _{CC}	Logic block power supply. The applicable voltage range is 2.7V to 5.5V. Make sure to connect a bypass capacitor between VCC (pin1) and SGND(pin 7) to stabilize power line of VM.	
4	EN	Logic enable pin.	Vice
		(Pull-down resistor incorporated)	V <u>cc</u>
		Standby mode is set when the voltage level is	
		Low. Therefore, current consumption is 0.	▲
		When the voltage level is High, the internal	
		circuit is activated.	
		Since $200K\Omega$ of pull-down resistor is inserted,	
		when OPEN the operation is equivalent to that	
		of Low control signal.	▲ ≹200kΩ
			m m
2	IN1	Control signal input pin	
3	IN2	Driver output switching.	V <u>CC</u>
5	ICTRL	(Pull-down resistor incorporated)	
		When the voltage level is High, all the outputs	
		that correspond to inputs are activated.	Т
		Since 200K Ω of pull-down resistor is inserted,	10kΩ
		when OPEN the operation is equivalent to that	
		of Low control signal.	
		PWM control is feasible when the input	Α <i>ξ</i> 200kΩ
		frequency is 200KHz or lower.	
			m m
10	OUT1	Driver output	
10	0011	Driver output. This pin is connected to the motor.	∨M
14	OUT2	Operation mode is determined according to the	
15	0012	state of input pins.	• · · · · · · · · · · · · · · · · · · ·
10			
			OUT1 OUT2

LV8400V Application Note

Pin No.	Pin name	Description	Equivalent circuit
6 8	ISET IOUT	Constant current output. ON/OFF of the internal Nch MOS is determined according to the state of ICTRL. By connecting current sense resistor with ISET(pin 6) and SGND (pin 8), you can sink constant current from IOUT(pin 8).	IOUT Reference voltage 0.2V ISET
7	SGND	Logic block ground.	
12 13	PGND	Drivers block ground. (Both pins must be connected)	

Operation explanation

Saturation drive H bridge

H bridge drive is integrated which enables controlling 4 modes of forward, reverse, brake, and standby.

Logic input specifications

	-				
EN	IN1	IN2	OUT1	OUT2	Mode
	Н	Н	L	L	Brake
	Н	L	Н	L	Forward
п	L	Н	L	Н	Reverse
	L	L	Z	Z	Standby
L	-	-	Z	Z	All function stop

EN	ICTRL	IOUT	Mode					
Ц	Н	ON	Constant current ON					
п	L	Z	Constant current OFF					
L	-	Z	All function stop					
, denotes a dentit some value 7								

- : denotes a don't care value. Z: High-impedance

When IN1 and IN2 are "Low", the operation of H bridge output stage is in standby mode. When "high" is input to the input pin, the output transistor of the H bridge output stage operates and the operation shifts as follows: forward, reverse, and brake.

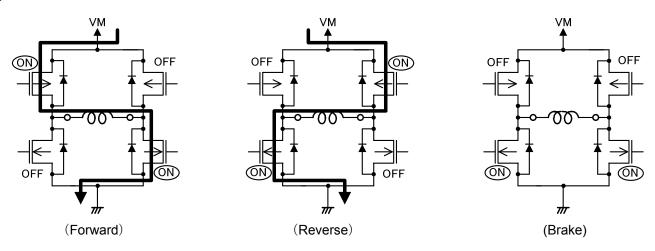


Figure 16. Output stage transistor function

- Current drain is zero in all function stop mode. (excluding the current that flows out of the EN pin)
- * All power transistors turn off and the motor stops driving when the IC is detected in low voltage or thermal protection mod

Constant current output circuit

Since you can sink constant current of 30mA at a maximum, this motor driver can be used for LED. The output constant current (IOUT) is determined by the internal reference voltage and the sense resistor between the ISET and SGND pins.

IOUT = Internal reference voltage (0.2V) ÷ Sense resistor (RSET)

IOUT calculating formula

$$IOUT = \frac{0.2[V]}{RSET}$$
(Ex.) Setup to IOUT=5.0[mA]

$$IOUT = \frac{0.2[V]}{40\Omega} \cong 5.0[mA]$$

From the formula above, I_{OUT} = 5mA when a sense resistor of 40 Ω is connected between the ISET and SGND.

Thermal shutdown function

This IC includes thermal shutdown circuit.

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds 180°C. As the temperature falls by hysteresis, the output turned on again (automatic restoration). The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax=150°C.

Thermal shutdown temperature = 180°C (typ)

VCC Low voltage malfunction prevention

This IC includes the function of VCC Low voltage malfunction prevention.

When the supply voltage of VCC lowers down to approximately 2.25V (typ), H bridge output stage shifts from operation mode to standby mode. On the other hand, when the supply voltage of VCC increases to approximately 2.35V, H bridge output stage shifts to operation mode.

VCC low-voltage cutoff voltage = 2.25V(typ)

Application Circuit Example

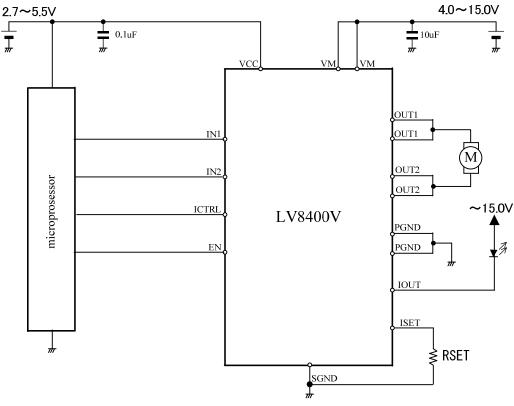


Figure 17. Sample Application Circuit

* : Connect a bypass capacitor as close as possible to the IC to absorb kickback. Characteristics or the IC may be damaged if an instantaneous voltage surge exceeds the maximum ratings in VM line due to coil kickback or other causes.

Bypass capacitor has no specific regulation on electrolytic capacitor or ceramic capacitor. However, it is recommended that the value of capacitor should be as high as possible. When capacitor with high capacitance is used, charge current to capacitor increases. Hence, caution is required for the battery's capability of current supply.

Recommendation value Between VM and PGND: 10uF or higher Between VCC and SGND: 0.1uF or higher

Operation setting of DC motor

When you drive DC motor with LV8400V, caution is required to switch motor rotation from forward to reverse because when doing so, electromotive force (EMF) is generated and in some cases, current can exceed the ratings which may lead to the destruction and malfunction of the IC.

Coil current (Io) for each operation is obtained as follows when switching motor rotation from forward to reverse.

• Starting up motor operation:

Coil current
$$Io(A) = \frac{VM - EMF(V)}{Coil \ resistance(\Omega)}$$

At startup, Io is high because EMF is 0. As the motor starts to rotate, EMF becomes higher and lout becomes lower.

• When switching motor rotation from forward to reverse:

Coil current
$$Io(A) = \frac{VM + EMF(V)}{Coil \ resistan ce(\Omega)}$$

When EMF is nearly equal to VCC at a max, make sure that the current does not exceed lomax since a current which is about double the startup current may flow at reverse brake.

• Brake:

Coil current
$$Io(A) = \frac{EMF(V)}{Coil \ resistan ce(\Omega)}$$

Since EMF is 0 when the rotation of motor stops, lo is 0 as well.

 $\langle \rangle$

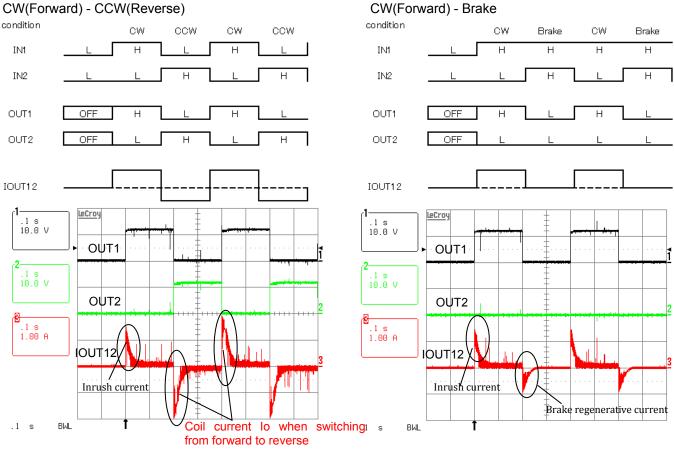
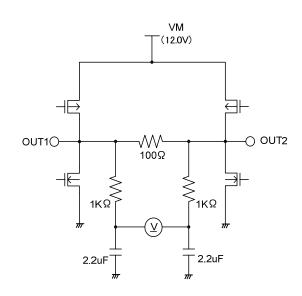


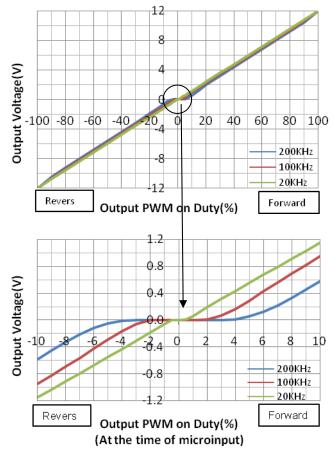
Figure 18. Driving waveform of DC motor

When you switch motor rotation form forward to reverse, if lout is higher than lomax, you can operate short brake mode between forward and reverse either to slow down or stop the motor.

Input and output characteristics of H-Bridge

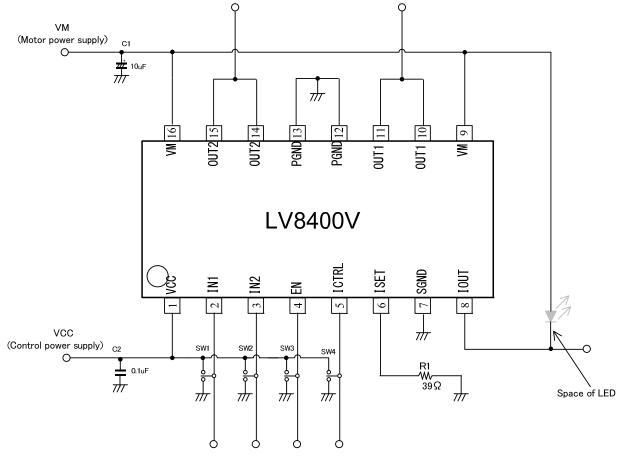

LV8400V can be driven by direct PWM control of H-Bridge by inputting PWM signal to IN.

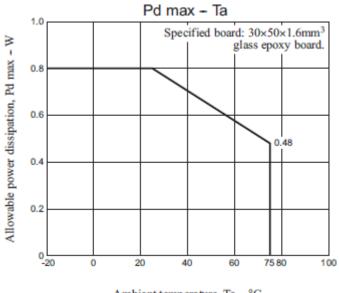
However output response of H-Bridge worsens around On-duty 0%, which generates dead zone. As a result, IC control loses lineality.


If you intend to drive motor in such control range, make sure to check the operation of your motor.

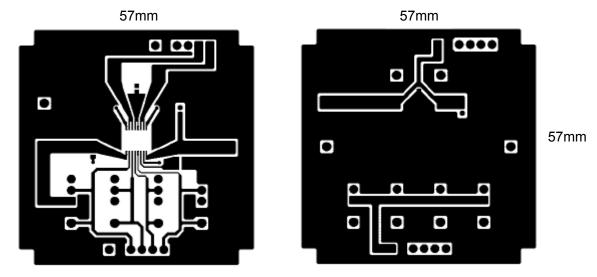
Input-Output Characteristics of H-Bridge (reference data) Forward/Reverse⇔Brake

VM=12.0V



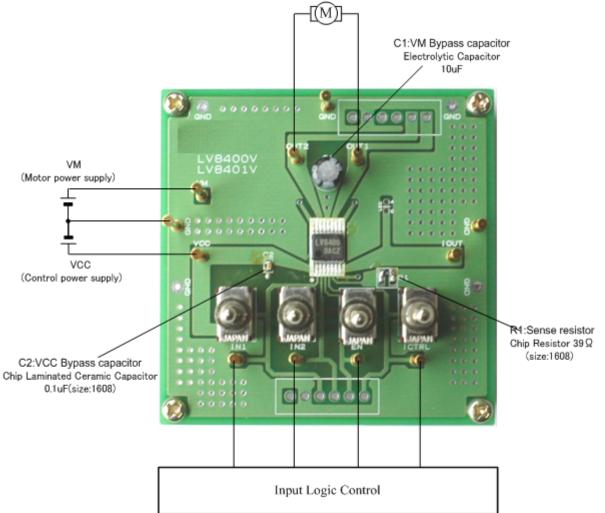

Evaluation Board Manual

1. Evaluation Board circuit diagram


Bill of Materials for LV8400V Evaluation Board

Designator	Qty	Description	Value	Tol	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
		•				•			
IC1	1	Motor Driver			SSOP16 (225mil)	ON Semiconductor	LV8400V	No	Yes
C1	1	VM Bypass capacitor	10μF 50V	20%	F2.0-5	SUN Electronic Industries	50ME10HC	Yes	Yes
C2	1	VCC Bypass capacitor	0.1µF 100V	10%	1608	Murata	GRM188R72A 104KA35D	Yes	Yes
R1	1	Sense resistor	39Ω 1W	5%	1608	KOA	RK73B1JT390 J	Yes	Yes
LED	1							Yes	
SW1-SW4	4	Switch				MIYAMA	MS-621-A01	Yes	Yes
TP1-TP8	8	Test points				MAC8	ST-1-3	Yes	Yes

Ambient temperature, Ta - °C



(Top side)

(Back side)

2. DC motor drive

- Connect a DC motor with OUT1 and OUT2.
- Connect the motor power supply with the terminal VM, the control power supply with the terminal VCC. Connect the GND line with the terminal GND.
- You can drive DC motor by setting EN=High and switching the input signal as follows.

EN	IN1	IN2	OUT1	OUT2	Mode
	Н	Н	L	L	Brake
ц	Н	L	Н	L	Forward
п	L	Н	L	Н	Reverse
	L	L	Z	Z	Standby
L	-	-	Z	Z	All function stop

When you drive DC motor with LV8400V, caution is required to switch motor rotation from forward to reverse because when doing so, electromotive force (EMF) is generated and in some cases, current can exceed the ratings which may lead to the destruction and malfunction of the IC. See p.11 for the further details.

•By setting ICTRL to High, constant current output circuit operates.

Since you can sink the constant current of 30mA at a maximum, this IC can be used for LED.

The output constant current (I_{OUT}) is determined by the internal reference voltage and the sense resistor between the ISET and SGND pins.

IOUT = Internal reference voltage (0.2V) ÷ Sense resistor (RSET)

IOUT calculating formula $IOUT = \frac{0.2[V]}{RSET}$ (Ex.) Setup to IOUT=5.0[mA] $IOUT = \frac{0.2[V]}{40\Omega} \cong 5.0[mA]$

If necessary, please use LED to confirm the operation of the IC.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deatth associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opp